By Topic

A parallel genetic/neural network learning algorithm for MIMD shared memory machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hung, S.L. ; Dept. of Civil Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Adeli, H.

A new algorithm is presented for training of multilayer feedforward neural networks by integrating a genetic algorithm with an adaptive conjugate gradient neural network learning algorithm. The parallel hybrid learning algorithm has been implemented in C on an MIMD shared memory machine (Cray Y-MP8/864 supercomputer). It has been applied to two different domains, engineering design and image recognition. The performance of the algorithm has been evaluated by applying it to three examples. The superior convergence property of the parallel hybrid neural network learning algorithm presented in this paper is demonstrated

Published in:

Neural Networks, IEEE Transactions on  (Volume:5 ,  Issue: 6 )