By Topic

The electrical breakdown characteristics of oil-paper insulation under steep front impulse voltages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vandermaar, A.J. ; Powertech Labs. Inc., Surrey, BC, Canada ; Wang, M. ; Neilson, J.B. ; Srivastava, K.D.

Disconnecting switch operations in gas insulated equipment cause transient voltages with risetimes as steep as 5 to 20 nanoseconds and magnitudes as high as 2.5 pu. There is very little information on the effect of these transients on oil-paper insulated equipment. There have been reports, however of transformer and bushing failures caused by these transients. The electrical breakdown characteristics of oil-paper insulation under steep front impulse were studied in this project, which was co-sponsored by the Canadian Electrical Association and BC Hydro. V 50 (50% breakdown probability voltage) breakdown data was obtained with steep front (10 ns/2500 μs), lightning and switching impulse waveforms. Insulation breakdown voltage vs breakdown time (V-t) data and multiple impulse breakdown data were obtained with the steep front impulse waveform. The V50 results showed that the breakdown strengths were lower for steep front impulses than for lightning impulses. The multiple impulse breakdown results showed that oil-paper insulation breakdown strength can be lower than 100 kV/mm. These results are alarming, since they suggest that oil-paper insulated equipment subjected to steep front transients will fail at voltages below the lightning impulse design level (BIL). The volt-time data had a discontinuity. The breakdown process at risetimes below about 50 ns was different from the breakdown process at risetimes above 50 ns

Published in:

Power Delivery, IEEE Transactions on  (Volume:9 ,  Issue: 4 )