By Topic

Analysis of a wireless MAC protocol with client-server traffic and capture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
LaMaire, Richard O. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Krishna, A. ; Ahmadi, H.

We analyze an efficient medium access control (MAC) protocol for use in a single cell of a wireless local area network (LAN). A fixed frame structure with two periods is used; one period for making reservations using a slotted Aloha protocol and a second period for data transmission. The MAC protocol operates in a centralized manner in which a single station, the base station, accepts reservations (transmission or data requests) that are made by the remote stations, and then schedules the times in which they will transmit or receive data. We consider two different types of client-server traffic models, an open-loop and a closed-loop model. In the open-loop model, a remote station can generate reservation requests for the base station whether or not it has received a response from the base station. In the closed-loop case, the remote station waits for a response before generating a new request. The performance of the MAC protocol was analyzed exactly for both the open and closed-loop traffic models and for cases in which transmission errors and a mean-value type of radio capture model are included. In addition, different policies were considered for the transmission strategy that is used by the remote stations when they attempt to make reservations. We derive exact results for the mean throughput and waiting times as well as for the queue length distributions. We also derive an approximate Markov chain to treat a case in which a fixed-position capture model is used. Several types of behavior are illustrated through the use of numerical examples

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:12 ,  Issue: 8 )