By Topic

A minimum description length model for recognizing objects with variable appearances (The VAPOR model)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Canning, J. ; Sch. of Comput. Sci., Oklahoma Univ., Norman, OK, USA

Most object recognition systems can only model objects composed of rigid pieces whose appearance depends only on lighting and viewpoint. Many real world objects, however, have variable appearances because they are flexible and/or have a variable number of parts. These objects cannot be easily modeled using current techniques. The author proposes the use of a knowledge representation method called the VAPOR (Variable APpearance Object Representation) model to represent objects with these kinds of variable appearances. The VAPOR model is an idealization of the object; all instances of the model in an image are variations from the ideal appearance. The variations are evaluated by the description length of the data given the model, i.e., the number of information-theoretic bits needed to represent the model and the deviations of the data from the ideal appearance. The shortest length model is chosen as the best description. The author demonstrates how the VAPOR model performs in a simple domain of circles and polygons and in the complex domain of finding cloverleaf interchanges in aerial images of roads

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:16 ,  Issue: 10 )