By Topic

Projective reconstruction and invariants from multiple images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hartley, R.I. ; Gen. Electr. Corp. Res. & Dev. Center, Schenectady, NY, USA

This correspondence investigates projective reconstruction of geometric configurations seen in two or more perspective views, and the computation of projective invariants of these configurations from their images. A basic tool in this investigation is the fundamental matrix that describes the epipolar correspondence between image pairs. It is proven that once the epipolar geometry is known, the configurations of many geometric structures (for instance sets of points or lines) are determined up to a collineation of projective 3-space 𝒫3 by their projection in two independent images. This theorem is the key to a method for the computation of invariants of the geometry. Invariants of six points in 𝒫3 and of four lines in 𝒫3 are defined and discussed. An example with real images shows that they are effective in distinguishing different geometrical configurations. Since the fundamental matrix is a basic tool in the computation of these invariants, new methods of computing the fundamental matrix from seven-point correspondences in two images or six-point correspondences in three images are given

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:16 ,  Issue: 10 )