By Topic

Matching point features with ordered geometric, rigidity, and disparity constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaoping Hu ; Sun Microsyst. Comput. Corp., Mountain View, CA, USA ; N. Ahuja

This correspondence presents a matching algorithm for obtaining feature point correspondences across images containing rigid objects undergoing different motions. First point features are detected using newly developed feature detectors. Then a variety of constraints are applied starting with simplest and following with more informed ones. First, an intensity-based matching algorithm is applied to the feature points to obtain unique point correspondences. This is followed by the application of a sequence of newly developed heuristic tests involving geometry, rigidity, and disparity. The geometric tests match two-dimensional geometrical relationships among the feature points, the rigidity test enforces the three dimensional rigidity of the object, and the disparity test ensures that no matched feature point in an image could be rematched with another feature, if reassigned another disparity value associated with another matched pair or an assumed match on the epipolar line. The computational complexity is proportional to the numbers of detected feature points in the two images. Experimental results with indoor and outdoor images are presented, which show that the algorithm yields only correct matches for scenes containing rigid objects

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:16 ,  Issue: 10 )