By Topic

Modeling arsenic redistribution during titanium silicide formation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Taylor, R.G. ; Dept. of Electr. Eng., Toronto Univ., Ont., Canada ; Salama, C.A.T. ; Ratnam, P. ; Naem, A.

A novel double-moving-boundary approach to modeling arsenic redistribution during titanium silicide formation over shallow junctions is presented. Arsenic redistribution is modeled by segregation across the TiSi/sub 2//Si interface, rapid diffusion in the TiSi/sub 2/ layer, and evaporation at the TiSi/sub 2/ surface. Physical models for each redistribution mechanism are implemented in process simulation, and the main parameters are extracted by comparing simulations to experimental secondary ion mass spectrometry (SIMS) profiles of arsenic in the TiSi/sub 2//Si structure. It is concluded that the approach allows accurate extraction of the specific contact resistivity after TiSi/sub 2/ contact formation to shallow junctions commonly encountered in micron and submicron silicon device technology.<>

Published in:

Electron Devices Meeting, 1988. IEDM '88. Technical Digest., International

Date of Conference:

11-14 Dec. 1988