By Topic

Dynamic belief networks for discrete monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nicholson, A.E. ; Dept. of Comput. Sci., Brown Univ., Providence, RI, USA ; Brady, J.M.

We describe the development of a monitoring system which uses sensor observation data about discrete events to construct dynamically a probabilistic model of the world. This model is a Bayesian network incorporating temporal aspects, which we call a dynamic belief network; it is used to reason under uncertainty about both the causes and consequences of the events being monitored. The basic dynamic construction of the network is data-driven. However the model construction process combines sensor data about events with externally provided information about agents' behavior, and knowledge already contained within the model, to control the size and complexity of the network. This means that both the network structure within a time interval, and the amount of history and detail maintained, can vary over time. We illustrate the system with the example domain of monitoring robot vehicles and people in a restricted dynamic environment using light-beam sensor data. In addition to presenting a generic network structure for monitoring domains, we describe the use of more complex network structures which address two specific monitoring problems, sensor validation and the data association problem

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:24 ,  Issue: 11 )