By Topic

Nanometric dielectrics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lewis, T.J. ; Sch. of Electron. Eng. and Comput. Sci., Univ. of Wales, Bangor, UK

It is suggested that a major field of study in the future development of dielectrics will concern their properties when relatively few molecules are involved. Such smallness arises naturally at interfaces of nanometric thickness and will occur also when dielectrics are employed in the nano-technical devices of the future. It already occurs in living systems where the dielectric and conductive properties of biomaterials are vital in sustaining activity. The transverse and lateral properties of interfaces, including the effects of molecular ordering, are considered and it is suggested that the advent of scanning tunneling and atomic force microscopies provides a significant opportunity for nanometric dielectric studies. An important feature, suggested for future exploitation, is the cross-coupling in interfaces of force fields arising from electrical, mechanical, chemical and entropic potential gradients. Application of these concepts to biology and to the behavior of polymer gels which may lead to development of muscle-like actuators and transducers are considered. Finally, attention is drawn to the likely role of nanometric interfacial processes in the initiation of electrical breakdown in insulating materials

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:1 ,  Issue: 5 )