By Topic

A robust H power system stabilizer with no adverse effect on shaft torsional modes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Asgharian, R. ; Dept. of Electr. Eng., Ferdowsi Univ. of Mashhad, Iran

The H optimal control theory has been used to design a robust power system stabilizer (PSS) to improve transient and dynamic stabilities of a turbogenerator connected to an infinite busbar. It is demonstrated that the effects of disturbances in the machine output can be minimized and sufficient closed-loop stability margins (robustness) can be obtained to tolerate variations in the loop transfer functions, such as those which might arise from unmodeled low-damped high-frequency modes of oscillations. The resulting controller would effectively enhance the synchronizing and damping torques of the machine without the risk of exciting the shaft torsional modes. This is in marked contrast with the unstable performance of linear quadratic (LQ) optimal controllers under similar conditions. The H design methodology also ensures a satisfactory performance of the PSS under a wide range of system operating conditions

Published in:

Energy Conversion, IEEE Transactions on  (Volume:9 ,  Issue: 3 )