By Topic

Steering left-invariant control systems on matrix Lie groups

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sarti, Augusto ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Walsh, G. ; Sastry, S.

Generalizes a technique for eliminating the drift from the description of a control system on a matrix Lie group with left-invariant vector fields. A diffeomorphism of the state space together with an affine input transformation are used in order to put the system into an equivalent left-invariant drift-free form. Techniques developed for steering drift-free control systems may then be applied. The authors apply this method to the Lie group of the rigid rotations SO(3) as in the authors' previous work (Walsh, Sarti,and Sastry, 1993), and to a new example, the rigid motions SE(3)

Published in:

Decision and Control, 1993., Proceedings of the 32nd IEEE Conference on

Date of Conference:

15-17 Dec 1993