By Topic

Hierarchical state estimation using a fast rectangular-coordinate method [power system analysis computing]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Iwamoto, S. ; Dept. of Electr. Eng., Waseda Univ., Tokyo, Japan ; Kusano, M. ; Quintana, V.H.

A hierarchical computing scheme for power system state estimation is developed by carefully considering mismatches arising from the system decomposition. The method makes use of an extension of a fast second-order load-flow method that allows a fixed Jacobian matrix to be used in the hierarchical algorithm. In the problem formulation, the power network is decomposed into two or more subsystems; the interaction among them is taken into account through the tie-line bus voltages. The hierarchical structure of the method consists of two levels: the upper level, where the optimal tie-line bus voltages are evaluated; and the lower level, where the optimal states of each subsystem are determined by minimizing a cost function that involves the entire system. Three test cases using the method are reported here and the test results are compared with those obtained by another hierarchical power system state estimation method

Published in:

Power Systems, IEEE Transactions on  (Volume:4 ,  Issue: 3 )