By Topic

Comparative fault tolerance of parallel distributed processing networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Segee, B.E. ; Dept. of Electr. & Comput. Eng., Maine Univ., Orono, ME, USA ; Carter, M.J.

We propose a method for evaluating and comparing the fault tolerance of a wide variety of parallel distributed processing networks (more commonly referred to as artificial neural networks). Despite the fact that these computing networks are biologically inspired and share many features of biological neural networks, they are not inherently tolerant of the loss of processing elements. We examine two classes of networks, multilayer perceptrons and Gaussian radial basis function networks, and show that there is a marked difference in their operational fault tolerance. Furthermore, we show that fault tolerance is influenced by the training algorithm used and even the initial state of the network. Using an idea due to Sequin and Clay (1990), we show that training with intermittent, randomly selected faults can dramatically enhance the fault tolerance of radial basis function networks, while it yields only marginal improvement when used with multilayer perceptrons

Published in:

Computers, IEEE Transactions on  (Volume:43 ,  Issue: 11 )