Cart (Loading....) | Create Account
Close category search window
 

On polynomial-time testable combinational circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rao, N.S.V. ; Center for Eng. Syst. Adv. Res., Oak Ridge Nat. Lab., TN, USA ; Toida, S.

The problems of identifying several nontrivial classes of Polynomial-Time Testable (PTT) circuits are shown to be NP-complete or harder. First, PTT classes obtained by using circuit decompositions proposed by Fujiwara (1988) and Chakradhar et al. (1990) are considered. Another type of decompositions, based on fanout-reconvergent (f-r) pairs, which also lead to PTT classes are proposed. The problems of obtaining these decompositions, and also some structurally similar general graph decompositions, are shown to be NP-complete or harder. Then, the problems of recognizing PTT classes formed by the Boolean formulae belonging to the weakly positive, weakly negative, bijunctive and affine classes are shown to be NP-complete

Published in:

Computers, IEEE Transactions on  (Volume:43 ,  Issue: 11 )

Date of Publication:

Nov 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.