By Topic

Memory latency effects in decoupled architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kurian, L. ; Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA ; Hulina, P.T. ; Coraor, L.D.

Decoupled computer architectures partition the memory access and execute functions in a computer program and achieve high-performance by exploiting the fine-grain parallelism between the two. These architectures make use of an access processor to perform the data fetch ahead of demand by the execute process and hence are often less sensitive to memory access delays than conventional architectures. Past performance studies of decoupled computers used memory systems that are interleaved or pipelined, and in those studies, latency effects were partially hidden due to interleaving. A detailed simulation study of the latency effects in decoupled computers is undertaken in this paper. Decoupled architecture performance is compared to single processors with caches. The memory latency sensitivity of cache based uniprocessors and decoupled systems is studied. Simulations are performed to determine the significance of data caches in a decoupled architecture. It is observed that decoupled architectures can reduce the peak memory bandwidth requirement, but not the total bandwidth, whereas data caches can reduce the total bandwidth by capturing locality. It may be concluded that despite their capability to partially mask the effects of memory latency, decoupled architectures still need a data cache

Published in:

Computers, IEEE Transactions on  (Volume:43 ,  Issue: 10 )