By Topic

Prediction of magnetic flux-controlled gate voltage in superconducting field-effect transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Glasser, L.A. ; Hitachi Ltd., Tokyo, Japan

The undirectional model to the superconducting field-effect transistor (SFET) is shown to be thermodynamically unsound. A gate voltage which is controlled by the magnetic flux difference in a Josephson weak link is predicted by energy arguments. For a passive SFET model to be consistent with recent experimental observations of a charge-controlled critical current, a back-reaction from the DC drain-to-source flux (phase difference) to the DC gate voltage is required. As this effect is important in large devices and occurs at V/sub DS/=0, it does not appear to be directly related to charge-space energy bands or quasiparticle interference.<>

Published in:

Electron Device Letters, IEEE  (Volume:10 ,  Issue: 2 )