By Topic

A multilevel approach to surface response in dynamically deformable models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Palazzi, L.F. ; Dept. of Comput. Sci., British Columbia Univ., Vancouver, BC, Canada ; Forsey, D.R.

Discretized representations of deformable objects, based upon simple dynamic point-mass systems, rely upon the propagation of forces between neighbouring elements to produce a global change in the shape of the surface. Attempting to make such a surface rigid produces stiff equations that are costly to evaluate with any numerical stability. This paper introduces a new multilevel approach for controlling the response of a deformable object to external forces. The user specifies the amount of flexibility or stiffness of the surface by controlling how the applied forces propagate through the levels of a multi-resolution representation of the object. A wide range of surface behaviour is possible, and rigid motion is attained without resort to special numerical methods. This technique is applied to the displacement constraints method of Gascuel and Gascuel (1992) to provide explicit graduated control of the response of a deformable object to imposed forces

Published in:

Computer Animation '94., Proceedings of

Date of Conference:

25-28 May 1994