By Topic

A hierarchical statistical framework for the segmentation of deformable objects in image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. Kervrann ; IRISA, Rennes, France ; F. Heitz

In this paper, we propose a new statistical framework for modeling and extracting 2D moving deformable objects from image sequences. The object representation relies on a hierarchical description of the deformations applied to a template. Global deformations are modeled using a Karhunen Loeve expansion of the distortions observed on a representative population. Local deformations are modeled by a (first-order) MarKov process. The optimal bayesian estimate of the global and local deformations is obtained by maximizing a non-linear joint probability distribution using stochastic and deterministic optimization techniques. The use of global optimization techniques yields robust and reliable segmentations in adverse situations such as low signal-to-noise ratio, non-gaussian noise or occlusions. Moreover, no human interaction is required to initialize the model. The approach is demonstrated on synthetic as well as on real-world image sequences showing moving hands with partial occlusions

Published in:

Computer Vision and Pattern Recognition, 1994. Proceedings CVPR '94., 1994 IEEE Computer Society Conference on

Date of Conference:

21-23 Jun 1994