By Topic

Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmission systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gimlett, J.L. ; Bellcore, Red Bank, NJ, USA ; Cheung, N.K.

Large power penalties and bit-error-rate floors have been observed in some Gb/s systems using distributed feedback (DFB) lasers, which could be attributed to interferometric conversion of laser phase noise to intensity noise by multiple reflections at connectors and splices. The authors calculated the power spectral density of the interferometric noise and its impact on system performance as a function of both the magnitude and number of reflections, and they compare the theoretical predictions with experimental results. Their studies indicate that connectors and splices with return losses of more than about 25 dB are required for the reliable operation of Gb/s fiber transmission systems, even if optical isolators are used

Published in:

Lightwave Technology, Journal of  (Volume:7 ,  Issue: 6 )