By Topic

A software-aided time resolution doubler (TRD) operating as a TDC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
M. M. Rashid ; Dept. of Nucl. Eng., Kyushu Univ., Fukuoka, Japan ; H. Matsumoto ; O. Iwamoto ; A. Nohtomi
more authors

A ratio-to-digital converter (RDC) is used to determine the position of ionization in a single wire position sensitive proportional counter. In the RDC, the digital output is obtained by a TDC utilizing the principle of a linear discharge type ADC. The conversion time as well as the time resolution of this type of ADC is dependent on the frequency of the clock. An idea of a time resolution doubler (TRD) has been conceived by applying a simple logic to the basic idea of a two-phase active TDC system to double the effective operating frequency of a TDC. The final output is obtained by the help of the data processing software. An attempt is made to minimize the problem of differential nonlinearity, a factor that limits the practical use of a two-phase active TDC system. A prototype TRD has been developed for using as a TDC in the RDC system of this laboratory. Utilizing a 100 MHz clock, the TRD acts as an effective 200 MHz TDC and gives the RDC output with a full scale capacity of 8192 channels. The experimentally observed differential nonlinearity of the TRD based RDC is comparable to that of a conventional TDC based RDC

Published in:

IEEE Transactions on Nuclear Science  (Volume:41 ,  Issue: 4 )