By Topic

Imaging multi-energy gamma-ray fields with a Compton scatter camera

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Martin, J.B. ; Dept. of Nucl. Eng., Michigan Univ., Ann Arbor, MI, USA ; Dogan, N. ; Gormley, J.E. ; Knoll, G.F.
more authors

Multi-energy gamma-ray fields have been imaged with a ring Compton scatter camera (RCC). The RCC is intended for industrial applications, where there is a need to image multiple gamma-ray lines from spatially extended sources. To our knowledge, the ability of a Compton scatter camera to perform this task had not previously been demonstrated. Gamma rays with different incident energies are distinguished based on the total energy deposited in the camera elements. For multiple gamma-ray lines, separate images are generated for each line energy. Random coincidences and other interfering interactions have been investigated. Camera response has been characterized for energies from 0.511 to 2.75 MeV. Different gamma-ray lines from extended sources have been measured and images reconstructed using both direct and iterative algorithms

Published in:

Nuclear Science, IEEE Transactions on  (Volume:41 ,  Issue: 4 )