By Topic

ESPRIT-estimation of signal parameters via rotational invariance techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Roy, R. ; Inf. Syst. Lab., Stanford Univ., CA, USA ; Kailath, T.

An approach to the general problem of signal parameter estimation is described. The algorithm differs from its predecessor in that a total least-squares rather than a standard least-squares criterion is used. Although discussed in the context of direction-of-arrival estimation, ESPRIT can be applied to a wide variety of problems including accurate detection and estimation of sinusoids in noise. It exploits an underlying rotational invariance among signal subspaces induced by an array of sensors with a translational invariance structure. The technique, when applicable, manifests significant performance and computational advantages over previous algorithms such as MEM, Capon's MLM, and MUSIC

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:37 ,  Issue: 7 )