By Topic

Warm plasma dispersion relation of the fast Alfven wave for asymmetrical heating current drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. M. Gahl ; Dept. of Electr. Eng., Texas Tech. Univ., Lubbock, TX, USA ; O. Ishihara ; M. O. Hagler ; M. Kristiansen

Experimental observation of current drive by asymmetrical heating of ions in the Texas Tech Tokamak suggests that penetration of the fast Alfven wave near the fundamental ion-cyclotron resonance is restricted. A numerical study of the warm plasma dispersion relation near the ion-cyclotron resonance does indeed show this effect. The data reveal that, as the wave approaches the resonant layer from the high or low field side of the torus, it first passes through a region where asymmetrical heating takes place and the wave energy is absorbed by ions moving with high velocity parallel to the magnetic field

Published in:

IEEE Transactions on Plasma Science  (Volume:17 ,  Issue: 3 )