By Topic

A deconvolution technique for B-dot signals from a plasma-driven electromagnetic launcher

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bouvier, B.U. ; Westinghouse Electr. Corp., Pittsburgh, PA, USA

A novel technique is being developed to quantify the current distribution in the plasma armature of an electromagnetic launcher (EML). The technique relies on data from B-dot probes inserted above the barrel of an EML. The current distribution is found by taking the fast Fourier transform of the integral of the B-dot signal and deconvolving it with a geometry-dependent weight function. The result allows calculation of the total plasma length and total current magnitude. The author describes the signal-analysis technique, discusses results obtained from theoretical B-dot signals, and suggests possible sources of error which may be encountered when deconvolving experimental B-dot signals

Published in:

Plasma Science, IEEE Transactions on  (Volume:17 ,  Issue: 3 )