Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Attenuation compensation in distributed amplifier design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Deibele, S. ; Dept. of Electr. & Comput. Eng., Wisconsin Univ., Madison, WI, USA ; Beyer, J.B.

A high-gain common-gate FET that presents at its drain a broadband impedance characterized by a (frequency-dependent) negative resistance and a capacitance is examined theoretically and experimentally. Loading the input and/or the output lines of a distributed amplifier with this circuit reduces the signal losses, leading to an increase in the allowed number of active devices with a consequent increase in the gain-bandwidth and gain-maximum-frequency products. The cascode circuit, a related loss reduction network, is also evaluated because of its use in distributed amplifiers. Several designs employing the common-gate FET loss-compensating circuit and/or the cascode amplifying circuit are compared to a conventional distributed amplifier optimized for gain-bandwidth product. Simulated gain-maximum-operating frequency product increases of 27% to 245% over that of the optimized conventional distributed amplifier are shown. The increase in single-stage amplifier gain provided by this technique often results in (proportionally) higher maximum output power

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:37 ,  Issue: 9 )