By Topic

GaAs heterojunction bipolar transistor device and IC technology for high-performance analog and microwave applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kim, M.E. ; TRW Inc., Redondo Beach, CA, USA ; Oki, A.K. ; Gorman, G.M. ; Umemoto, D.K.
more authors

GaAs-AlGaAs n-p-n heterojunction bipolar transistor (GaAs HBT) technology and its application to analog and microwave functions for high-performance military and commercial systems are discussed. In many applications the GaAs HBT offers key advantages over the alternative advanced silicon bipolar and III-V compound field-effect-transistor (FET) approaches. TRW's GaAs HBT device and IC fabrication process, basic HBT DC and RF performance, examples of applications, and technology qualification work are presented and serve as a basis for addressing general capability issues. A related 3-μm emitter-up, self-aligned HBT IC process provides excellent DC and RF performance, with simultaneous gain-bandwidth product, fT, and maximum frequency of oscillation, fmax, of approximately 20-40 GHz and DC current gain β≈50-100 at useful collector current densities ≈3-10 kA/cm2, early voltage ≈500-1000 V, and MSI-LSI integration levels. These capabilities facilitate versatile DC-20-GHz analog/microwave as well as 3-6 Gb/s digital applications, 2-3 G sample/s A/D conversion, and single-chip multifunctions with producibility

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:37 ,  Issue: 9 )