Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Performance evaluation of the different types of fiber-chromatic-dispersion equalization for IM-DD ultralong-distance optical communication systems with Er-doped fiber amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Taga, H. ; KDD Kamifukuoka R&D Labs., Saitama, Japan ; Yamamoto, S. ; Edagawa, N. ; Yoshida, Y.
more authors

We have evaluated the transmission performance of different fiber-chromatic-dispersion-equalization methodologies for ultralong distance IM-DD optical communication systems that use Er-doped fiber amplifier repeaters. The experiment used a 1000 km fiber loop consisting of 30 dispersion-shifted fiber spans and 31 Er-doped fiber amplifiers. We changed the insertion point of the normal single-mode fiber for equalization to change the shape of the accumulated chromatic dispersion. Comparison of the longest transmission distance and the width of the 9000 km transmissible window are discussed for several types of dispersion equalization. The results indicate that the best type of the dispersion equalization for ultralong distance IM-DD optical communication systems is to install dispersion-shifted fibers with short sections of normal single-mode fibers to compensate the accumulated dispersion

Published in:

Lightwave Technology, Journal of  (Volume:12 ,  Issue: 9 )