By Topic

Improved 8×8 integrated optical matrix switch using silica-based planar lightwave circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Okuno, M. ; NTT Opto-Electron. Labs., Ibaraki, Japan ; Kato, K. ; Ohmori, Y. ; Kawachi, M.
more authors

An improved 8×8 optical matrix switch was fabricated using silica-based planar lightwave circuits (PLCs) on a silicon substrate. Three improvements were made. First, the waveguide material was changed from titanium-doped silica (SiO22-TiO2) to germanium-doped silica (SiO22-GeO2) to reduce propagation loss. Second, offset driving powers were supplied to every switch unit to realize high extinction ratios. Third, the dummy switch units were modified to suppress the crosstalk through these units. The average insertion loss of the fabricated device was 3.81 db in the TE mode and 3.82 dB in the TM mode. The average extinction ratio of the switch units was 25.3 dB in the TE mode and 22.3 dB in the TM mode. The accumulated crosstalk was estimated to be less than -14 dB in the TE mode and -11 dB in the TM mode. The average driving power of the phase shifter in the on-state was 0.54 W in the TE mode and 0.52 W in the TM mode. The switching response time was 1.3 ms. The packaged 8×8 matrix switch with additional fiber-waveguide coupling loss of 2.7 dB was successfully employed in photonic multimedia switching and photonic inter-module connector system experiments

Published in:

Lightwave Technology, Journal of  (Volume:12 ,  Issue: 9 )