By Topic

Optimum local decision space partitioning for distributed detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lee, C.C. ; Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA ; Chao, J.J.

A distributed detection system is considered that consists of a number of independent local detectors and a fusion center. The decision statistics and performance characteristics (i.e. the false alarm probabilities and detection probabilities) of the local detectors are assumed as given. Communication is assumed only between each local detector and the fusion center and is one-way from the former to the latter. The fusion center receives decisions from the local detectors and combines them for a global decision. Instead of a one-bit hard decision, the authors propose that each local detector provides the fusion center with multiple-bit decision value which represents its decision and, conceptually, its degree of confidence on that decision. Generating a multiple-bit local decision entails a subpartitioning of the local decision space the optimization of which is studied. It is shown that the proposed system significantly outperforms one in which each local detector provides only a hard decision. Based on optimum subpartitioning of local decision space, the detection performance is shown to increase monotonically with the number of partitions

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:25 ,  Issue: 4 )