By Topic

A hybrid finite element method for 3-D scattering using nodal and edge elements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
W. E. Boyse ; Lockheed Palo Alto Res. Lab., CA, USA ; A. A. Seidl

A hybrid finite element method for three-dimensional scattering is presented and numerical examples shown. This approach, which couples finite element discretization with the method of moments, is particularly well suited for monostatic radar cross section calculations. The method is based on a scalar and vector potential formulation of Maxwell's equations, the use of nodal elements, and a highly efficient body of revolution implementation of the method of moments. Combined nodal and edge elements are employed to accurately model fields around corners and edges. A curvature-based sampling criterion is derived and shown to ensure accurate answers for highly curved scatterers. Numerical results and Cray computer timings are compared with published results for an edge element code using radiation boundary conditions

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:42 ,  Issue: 10 )