By Topic

Automatic unsupervised texture segmentation using hidden Markov model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jia-Lin Chen ; Dept. of Biophys. Sci., State Univ. of New York, Buffalo, NY, USA ; Kundu, A.

In this scheme, each texture is modeled as one HMM. Thus, if there are M different textures present in an image, there are M distinct HMMs to be found and trained. Consequently, the unsupervised texture segmentation problem becomes an HMM-based problem, where the appropriate number of HMMs, the associated model parameters, and the discrimination among the HMMs are the foci of the scheme. The scheme can be implemented by pipelined stages with no feedback from one stage to another, and each stage is highly suitable for parallel implementations. The scheme is evaluated using three textured images with different combinations of textures and is shown to perform with less than 3% error.<>

Published in:

Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE International Conference on  (Volume:5 )

Date of Conference:

27-30 April 1993