By Topic

Unsupervised image segmentation controlled by morphological contrast extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Marques, F. ; Dept. Teoria de la Senal y Commun., E.T.S.E.T.B.-U.P.C., Barcelona, Spain ; Cunillera, J. ; Gasull, A.

A novel approach for unsupervised image segmentation is described. This approach makes use of a Gaussian pyramid as multiresolution decomposition to analyze images. Compound random fields are used to model images at each resolution. The hierarchical image model is formed by a Strauss process in the lower level and a set of white Gaussian random fields in the upper level. This basic image model is adapted to the data present at each resolution. Segmentations at coarse resolutions are used to guide segmentations at finest resolutions. Segmentation quality is controlled, at each level, by means of morphological tools. The control procedure is based on the residue between the original image and a morphological center transform. This procedure checks whether the current segmentation contains all the relevant regions in the scene. If not, the algorithm introduces seeds into the segmented image in order to detect the new regions.<>

Published in:

Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE International Conference on  (Volume:5 )

Date of Conference:

27-30 April 1993