By Topic

Word spotting in scanned images using hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen, F.R. ; Xerox Palo Alto Res. Center, CA, USA ; Wilcox, L.D. ; Bloomberg, D.S.

A hidden-Markov-model (HMM)-based system for font-independent spotting of user-specified keywords in a scanned image is described. Word bounding boxes of potential keywords are extracted from the image using a morphology-based preprocessor. Feature vectors based on the external shape and internal structure of the word are computed over vertical columns of pixels in a word bounding box. For each user-specified keyword, an HMM is created by concatenating appropriate context-dependent character HMMs. Nonkeywords are modeled using an HMM based on context-dependent subcharacter models. Keyword spotting is performed using a Viterbi search through the HMM network created by connecting the keyword and nonkeyword HMMs in parallel. Applications of word-image spotting include information filtering in images from facsimile and copy machines, and information retrieval from text image databases.<>

Published in:

Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE International Conference on  (Volume:5 )

Date of Conference:

27-30 April 1993