By Topic

Efficient image classification using neural networks and multiresolution analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tirakis, A. ; Dept. Electr. Eng., Nat. Tech. Univ. of Athens, Greece ; Kollias, S.

The authors investigate a new efficient image classification strategy. They propose a multiresolution analysis of the images to be classified and use of feedforward neural networks to classify the images at various lower resolutions. This approach results in a major reduction of the networks' interconnection weights as well as the required learning times. The proposed approach is applied first to the images of the lowest resolution; if the classification results are not acceptable, it is successively repeated to the next images of higher resolution. A neural network architecture which incorporates most of the interconnection weights already computed at the lower level (i.e., the knowledge already acquired by the network of the previous resolution level) is proposed for this purpose. Experimental results illustrate the efficiency of the proposed multiresolution classification procedure in a real life application.<>

Published in:

Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE International Conference on  (Volume:1 )

Date of Conference:

27-30 April 1993