By Topic

Input impedance, radiation pattern, and radar cross section of spiral antennas using FDTD

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. W. Penney ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; R. J. Luebbers

A finite-difference time-domain (FDTD) analysis of spiral antennas is performed to calculate input impedance, antenna gain, and scattering. A semicircular spiral mounted on a dielectric substrate was simulated for computing the input impedance versus frequency. The gain and scattering computations were performed on a square Archimedean spiral mounted in a ground plane with a cavity backing. Total-field FDTD calculations are used to compute the impedance and gain patterns, while a specially modified scattered-field approach for aperture antennas in infinite ground planes is used for the scattering results. Comparisons are made with published impedance measurements and gain and scattering calculations done with a finite element method. Good results were obtained for impedance, radiation, and scattering

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:42 ,  Issue: 9 )