By Topic

Partitioned mixture distribution: an adaptive Bayesian network for low-level image processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Luttrell, S.P. ; Adaptive Syst. Theory Section, Defence Res Agency, Malvern, UK

Bayesian methods are used to analyse the problem of training a model to make predictions about the probability distribution of data that has yet to be received. Mixture distributions emerge naturally from this framework, but are not ideally matched to the density estimation problems that arise in image processing. An extension, called a partitioned mixture distribution is presented, which is essentially a set of overlapping mixture distributions. An expectation maximisation training algorithm is derived for optimising partitioned mixture distributions according to the maximum likelihood description. Finally, the results of some numerical simulations are presented, which demonstrate that lateral inhibition arises naturally in partitioned mixture distributions, and that the nodes in a partitioned mixture distribution network co-operate in such a way that each mixture distribution in the partitioned mixture distribution receives its necessary complement of computing machinery

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:141 ,  Issue: 4 )