By Topic

Reviewing automatic language identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Y. K. Muthusamy ; Syst. & Inf. Sci. Lab., Texas Instrum. Inc., Dallas, TX, USA ; E. Barnard ; R. A. Cole

The Oregon Graduate Institute Multi-language Telephone Speech Corpus (OGI-TS) was designed specifically for language identification research. It currently consists of spontaneous and fixed-vocabulary utterances in 11 languages: English, Farsi, French, German, Hindi, Japanese, Korean, Mandarin, Spanish, Tamil, and Vietnamese. These utterances were produced by 90 native speakers in each language over real telephone lines. Language identification is related to speaker-independent speech recognition and speaker identification in several interesting ways. It is therefore not surprising that many of the recent developments in language identification can be related to developments in those two fields. We review some of the more important recent approaches to language identification against the background of successes in speaker and speech recognition. In particular, we demonstrate how approaches to language identification based on acoustic modeling and language modeling, respectively, are similar to algorithms used in speaker-independent continuous speech recognition. Thereafter, prosodic and duration-based information sources are studied. We then review an approach to language identification that draws heavily on speaker identification. Finally, the performance of some representative algorithms is reported.<>

Published in:

IEEE Signal Processing Magazine  (Volume:11 ,  Issue: 4 )