By Topic

From wave theory to ray optics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Croswell, W.F. ; AP-S Historian, West Melbourne, FL, USA ; Bucci, O.M. ; Pelosi, G.

The aim of this article is to summarize the historical process which led to recovering the concept of a ray, typical of the pre-Maxwell theory of light, from wave theory. To this end, the contributions of Huygens (1690), Newton (1704), Young (1801), and Fresnel (1816), which can be considered the founders of the modern science of optics, are briefly described, giving evidence to some aspects that led to the formulation of the ondulatory theory of light. Then, it is seen how the concept of a ray was recovered from Kirchhoff's diffraction theory, which can be interpreted as a rigorous formulation of Fresnel's ideas. The key role of the Maggi-Rubinowicz (1888, 1924) representation of Kirchhoff's diffraction integral, which can be interpreted as the mathematical expression of Young's theory of diffraction, is discussed. Also, it is noted that the first theoretical derivation of diffracted rays, and of the cone of diffraction, was due to Adalbert Rubinowicz (1917). He was one of Sommerfeld's assistants, in Munich, in analyzing the transmission of a high-frequency field through an aperture in an opaque screen. The ideas which are briefly summarized produced the basis for the statement of the geometrical theory of diffraction. This ray theory, which is the natural extension of geometrical optics (GO), was presented by J.B. Keller, in 1953.<>

Published in:

Antennas and Propagation Magazine, IEEE  (Volume:36 ,  Issue: 4 )