By Topic

A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu-Chi Wu ; Sch. of Electr. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Debs, A.S. ; Marsten, R.E.

A new algorithm using the primal-dual interior point method with the predictor-corrector for solving nonlinear optimal power flow (OPF) problems is presented. The formulation and the solution technique are new. Both equalities and inequalities in the OPF are considered and simultaneously solved in a nonlinear manner based on the Karush-Kuhn-Tucker conditions. The major computational effort of the algorithm is solving a symmetrical system of equations, whose sparsity structure is fixed. Therefore only one optimal ordering and one symbolic factorization are involved. Numerical results of several test systems ranging in size from 9 to 2423 buses are presented and comparisons are made with the pure primal-dual interior point algorithm. The results show that the predictor-corrector primal-dual interior point algorithm for OPF is computationally more attractive than the pure primal-dual interior point algorithm in terms of speed and iteration count

Published in:

Power Systems, IEEE Transactions on  (Volume:9 ,  Issue: 2 )