By Topic

Order reduction of large-scale linear oscillatory system models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Trudnowski, D.J. ; Pacific Northwest Lab., Richland, WA, USA

Eigenanalysis and signal analysis techniques of deriving representations of power system oscillatory dynamics result in very high-order linear models. In order to apply many modern control design methods, the models must be reduced to a more manageable order while preserving essential characteristics. Presented in this paper is a model reduction method well suited for large-scale power systems. The method searches for the optimal subset of the high-order model that best represents the system. An Akaike information criterion is used to define the optimal reduced model. The method is first presented, and then examples of applying it to Prony analysis and eigenanalysis models of power systems are given

Published in:

Power Systems, IEEE Transactions on  (Volume:9 ,  Issue: 1 )