By Topic

Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ghosh, G. ; Light & Radio Waves Sect., Electrotech. Lab., Ibaraki, Japan ; Endo, M. ; Iwasaki, T.

Temperature-dependent Sellmeier coefficients are necessary to optimize optical design parameters of the optical fiber transmission system. These coefficients are calculated for fused silica (SiO2 ), aluminosilicate, and Vycor glasses for the first time to find the temperature dependence of chromatic dispersion at any wavelength from UV to 1.7 μm. The zero dispersion wavelength λ0 (1.273 μm for SiO2, 1.393 μm for aluminosilicate, and 1.265 μm for Vycor glasses at 26°C) varies linearly with temperature, and dλ0/dT is 0.03 nm/K for aluminosilicate and Vycor glasses, whereas for SiO2 it is 0.025 nm/K. This study interprets the recently observed experimental value of dλ0/dT for two dispersion shifted optical fibers; and the dominantly material origin of dλ0/dT is confirmed here as a fundamental property of the optical fiber glasses

Published in:

Lightwave Technology, Journal of  (Volume:12 ,  Issue: 8 )