By Topic

Automated derivation of time bounds in uniprocessor concurrent systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Avrunin, G.S. ; Massachusetts Univ., Amherst, MA, USA ; Corbett, J.C. ; Dillon, L.K. ; Wileden, J.C.

The successful development of complex real-time systems depends on analysis techniques that can accurately assess the timing properties of those systems. This paper describes a technique for deriving upper and lower bounds on the time that can elapse between two given events in an execution of a concurrent software system running on a single processor under arbitrary scheduling. The technique involves generating linear inequalities expressing conditions that must be satisfied by all executions of such a system and using integer programming methods to find appropriate solutions to the inequalities. The technique does not require construction of the state space of the system and its feasibility has been demonstrated by using an extended version of the constrained expression toolset to analyze the timing properties of some concurrent systems with very large state spaces

Published in:

Software Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 9 )