By Topic

A Bayesian analysis of the logarithmic-Poisson execution time model based on expert opinion and failure data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Campodonico, S. ; Res. and Test Dept., Assoc. of American Railroads, Washington, DC, USA ; Singpurwalla, Nozer D.

We propose a Bayesian approach for predicting the number of failures in a piece of software, using the logarithmic-Poisson model, a nonhomogeneous Poisson process (NHPP) commonly used for describing software failures. A similar approach can be applied to other forms of the NHPP. The key feature of the approach is that now we are able to use, in a formal manner, expert knowledge on software testing, as for example, published information on the empirical experiences of other researchers. This is accomplished by treating such information as expert opinion in the construction of a likelihood function which leads us to a joint distribution. The procedure is computationally intensive, but for the case of the logarithmic-Poisson model has been codified for use on a personal computer. We illustrate the working of the approach via some real live data on software testing. The aim is not to propose another model for software reliability assessment. Rather, we present a methodology that can be invoked with existing software reliability models.<>

Published in:

Software Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 9 )