By Topic

A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu-Shen Lu ; Dept. of Power Mech. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Jian-Shiang Chen

A self-organizing fuzzy controller to augment a sliding-mode control (SOFSMC) scheme for a class of nonlinear systems is proposed. The motivation behind this scheme is to combine the best features of self-organizing fuzzy control and sliding-mode control to achieve rapid and accurate tracking control of a class of nonlinear systems. The chatter encountered by most sliding-mode control schemes is greatly alleviated without sacrificing invariant properties. A stability analysis is presented; the design guidelines and the class of applicable systems are clearly identified. To verify the scheme, the authors performed experiments on its implementation in a magnetic levitation system. The results show that both alleviation of chatter and robust performance are achieved; the advantages of the scheme are indicated in comparison with the conventional sliding-mode design

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:41 ,  Issue: 5 )