By Topic

A Bayesian approach to reconstruction from incomplete projections of a multiple object 3D domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Y. Bresler ; Coordinated Sci. Lab., Illinois Univ., Urbana, IL, USA ; J. A. Fessler ; A. Macovski

An estimation approach is described for three-dimensional reconstruction from line integral projections using incomplete and very noisy data. Generalized cylinders parameterized by stochastic dynamic models are used to represent prior knowledge about the properties of objects of interest in the probed domain. The object models, a statistical measurement model, and the maximum a posteriori probability performance criterion are combined to reformulate the reconstruction problem as a computationally challenging nonlinear estimation problem. For computational feasibility, a suboptimal hierarchical algorithm is described whose individual steps are locally optimal and are combined to satisfy a global optimality criterion. The formulation and algorithm are restricted to objects whose center axis is a single-valued function of a fixed spatial coordinate. Simulation examples demonstrate accurate reconstructions with as few as four views in a 135° sector, at an average signal-to-noise ratio of 3.3

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:11 ,  Issue: 8 )