By Topic

Distributed associative memory (DAM) for bin-picking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wechsler, H. ; Sch. of Inf. Technol. & Eng., George Mason Univ., Fairfax, VA, USA ; Zimmerman, G.L.

The feasibility of using a distributed associative memory as the recognition component for a bin-picking system is established. The system displays invariance to metric distortions and a robust response in the presence of noise, occlusions, and faults. Although the system is primarily concerned with two-dimensional problems, eight extensions to the system allow the three-dimensional bin-picking problem to be addressed. It is noted that there are implicit weaknesses in the neural network model chosen for the heart of the recognition system. The distributed associative memory used is linear, and as a result there are certain desirable properties that cannot be exhibited by the computer vision system

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:11 ,  Issue: 8 )