By Topic

Parallel architecture for fast transforms with trigonometric kernel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Arguello, F. ; Dept. of Electron., Santiago de Compostela Univ., Spain ; Bruguera, J.D. ; Doallo, R. ; Zapata, E.L.

We present an unified parallel architecture for four of the most important fast orthogonal transforms with trigonometric kernel: Complex Valued Fourier (CFFT), Real Valued Fourier (RFFT), Hartley (FHT), and Cosine (FCT). Out of these, only the CFFT has a data flow coinciding with the one generated by the successive doubling method, which can be transformed on a constant geometry flow using perfect unshuffle or shuffle permutations. The other three require some type of hardware modification to guarantee the constant geometry of the successive doubling method. We have defined a generalized processing section (PS), based on a circular CORDIC rotator, for the four transforms. This PS section permits the evaluation of the CFFT and FCT transforms in n data recirculations and the RFFT and FHT transforms in n-1 data recirculations, with n being the number of stages of a transform of length N=rn. Also, the efficiency of the partitioned parallel architecture is optimum because there is no cycle loss in the systolic computation of all the butterflies for each of the four transforms

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:5 ,  Issue: 10 )