By Topic

A scalable parallel formulation of the backpropagation algorithm for hypercubes and related architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kumar, V. ; Dept. of Comput. Sci., Minnesota Univ., Minneapolis, MN, USA ; Shashi Shekhar ; Amin, M.B.

We present a new technique for mapping the backpropagation algorithm on hypercube and related architectures. A key component of this technique is a network partitioning scheme called checkerboarding. Checkerboarding allows us to replace the all-to-all broadcast operation performed by the commonly used vertical network partitioning scheme, with operations that are much faster on the hypercubes and related architectures. Checkerboarding can be combined with the pattern partitioning technique to form a hybrid scheme that performs better than either one of these schemes. Theoretical analysis and experimental results on nCUBE and CM5 show that our scheme performs better than the other schemes, for both uniform and nonuniform networks

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:5 ,  Issue: 10 )