Cart (Loading....) | Create Account
Close category search window
 

Task-directed computation of qualitative decisions from sensor data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hager, G.D. ; Dept. of Comput. Sci., Yale Univ., New Haven, CT, USA

Describes a novel approach to sensor-based decision making based on formulating and solving large systems of parametric constraints. The constraints describe both a model for sensor data and the criteria for correct decisions about the data. An incremental constraint solving technique that performs decision-directed model recovery is developed. This method is straightforward to apply, is easily parallelized, and convergence can be demonstrated under very reasonable structural and statistical assumptions. This approach is demonstrated on several different decision-making problems involving manipulation and categorization of objects observed with a range scanner. The experiments indicate that simultaneous solution of both model constraints and decision criteria can lead to efficient and effective decision making, even when the observed data does not strongly determine a data model

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:10 ,  Issue: 4 )

Date of Publication:

Aug 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.