By Topic

High acceleration, high performance solid state accelerometer development

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Killen ; Guidance & Control Directorate, US Army Missile Command, Redstone Arsenal, AL, USA ; D. Tarrant ; D. Jensen

This paper presents current accomplishments in the development of a high performance, high g, tactical accelerometer for use in the Advanced Kinetic Energy Missile (AdKEM) development program being conducted by the US Army Missile Command. The design goals of the accelerometer are to provide strapdown tactical navigation quality acceleration information throughout a 20 g soft launch phase, 1200 g boost phase, and low-g coast phase environment. The accelerometers must be able to provide acceleration measurements accurate enough to provide a navigational accuracy of 0.5 meter CEP at 500 meters. This translates to an accelerometer capable of measuring a 1200 g acceleration with a resolution of 1 milli-g. The AdKEM missile accelerometer and gyro outputs are used for control stability and midcourse guidance. The successful demonstration of this device offers a myriad of opportunities in both the commercial and military arenas. The operational environment and performance characteristics of the AdKEM accelerometer are presented. Crystalline quartz vibrating beam technology has been chosen for this accelerometer application to take advantage of solid state device characteristics. A solid state device with inherently digital output characteristics is desirable for strapdown navigation applications because of interface circuitry simplification, potential lower cost, inherent stability and longer storage life.<>

Published in:

IEEE Aerospace and Electronic Systems Magazine  (Volume:9 ,  Issue: 9 )